
Research Technology Services, DVC Research InfrastructureResearch Technology Services, DVC Research Infrastructure

Introduction to Linux and High Performance ComputingIntroduction to Linux and High Performance Computing

John ZaitseffJohn Zaitseff
March 2024March 2024

Outline of this course
• Computer architecture: laptops/desktops, workstations, servers, cloud and HPC

• Available HPC facilities: getting an account, creating a project

• Connecting to a server, cloud and/or HPC system

• The Linux command line and the Bash shell

• Working with directories and files

• Redirecting standard input, output and error

• Creating, editing and running script files

• Submitting jobs to a HPC cluster, controlling jobs, querying job status

This is your course, so ask questions!

2

“High performance computing (HPC) is the
use of large-scale, off-site computers and
parallel processing techniques for solving
complex computational problems… HPC is
typically used for solving advanced problems
and performing research activities through
computer modelling, simulation and
analysis…”

— Intersect Australia
http://www.intersect.org.au/time/supercomputing

What is High Performance Computing?

3

Image credit: Oak Ridge National Laboratory Leadership Computing Facility

http://www.intersect.org.au/time/supercomputing

Computer architecture: desktops, laptops…
Typical standard PC architecture:

• One processor (CPU)

• DRAM memory

• One graphics processor (GPU)

• Storage: hard drive(s), SSD(s)

• Keyboard

• Display screen: LCD

• Network: GbE

• Other peripherals, power supply,
cooling

4

Standard PC

Computer architecture: workstations
Typical workstation architecture:

• One or two processors (CPU)

• DRAM memory (with ECC)

• One or more GPUs

• Storage: hard drives, SSDs

• Keyboard

• Display screen: LCD

• Network: GbE, 10GbE

• Other peripherals, power supply,
cooling

5

Workstation PC

Computer architecture: servers
Typical server architecture:

• One to four processors (CPU)

• DRAM memory (with ECC)

• One or more GPUs (optional)

• Storage: hard drives, SSDs

• Network: GbE, 10GbE

• Power supply, cooling

• Access is almost always via
network ports using TCP/IP
Internet protocols

6

Server

Computer architecture: cloud servers
Typical cloud server architecture:

• Standard server architecture

• Hypervisor software creates
the illusion of multiple individual
(virtual) servers

• Virtual servers are usually
independent, non-cooperating

• Allows for virtual server migration

• Excellent for interactive processes

• Not “bare metal”: run ~10-15%
slower than physical hardware

7

Hypervisor software

Computer architecture: HPC
Massively Parallel Distributed Computational Clusters

• Many individual cooperating servers (“nodes”): dozens to
tens of thousands

• Multiple processors per node: between 8 and 64 cores

• Interconnected by fast networks: 10Gb, 56Gb, 100Gb+

• Fast networks optimised for interprocess communications,
often MPI (Message Passing Interface) using InfiniBand
using fat-tree or similar networks

• Almost without exception run Linux, often CentOS 7 or later

8

The old Trentino cluster
Image credit: John Zaitseff, UNSW

Computer architecture: simple HPC

9

SSH

Login node(s)
Head node

Data Mover node(s)

Compute nodes 1, 2, …, n

Storage nodes
Disks

Internal network switch

Computer architecture: more complex HPC

10

SSH

Login nodes

Head node

Data Mover nodes

Compute nodes 1, 2, …, n

Storage nodes Disks

Admin node(s)

Internal network switches
(e.g., for MPI, storage)

The Katana cluster: katana.unsw.edu.au

For staff and students at UNSW Sydney:

• 168 × Dell, Lenovo and Huawei server nodes (various models)
– Head/login nodes: katana (katana1, katana2 and katana3)
– Compute nodes: k001 to k255 (not all nodes present)

• 7060 × Intel Xeon processor cores (various models)
– Mostly two physical processors per node
– 16–80 × CPU cores per physical processor

• 54.5 TB of main memory (128–1536 GB per node)
• Over 3 PB of storage (and growing)
• 10Gb Ethernet + 100Gb Infiniband network interconnect
• Currently uses a “buy-in” scheme: ~$20k per node
• Ideal for beginner and intermediate HPC users

https://research.unsw.edu.au/katana

11

The old Leonardi cluster (similar to Katana)
Image credit: John Zaitseff, UNSW

https://research.unsw.edu.au/katana

The Gadi cluster: gadi.nci.org.au

12

Part of the Gadi cluster in Canberra, ACT
Image credit: National Computational Infrastructure

For researchers across Australia (national facilities):

• 4997 × compute server nodes
• 260,760 × Intel Xeon Cascade Lake and some older

Skylake and Broadwell processor cores
• 50 × compute nodes with 1536 GB of memory
• 7 × compute nodes with 3072 GB of memory
• 692 × NVIDIA Tesla V100 GPU coprocessors
• Over 1275.9 TB of main memory
• Over 68 PB of storage
• 200Gb Infiniband network in Dragonfly+ topology
• High-speed DDN Lustre parallel file system
• Ideal for intermediate and advanced HPC users

https://nci.org.au/our-systems/hpc-systems

https://nci.org.au/our-systems/hpc-systems

Why learn Linux?
• To use High Performance Computing, you need to know how to use Linux

• Every single Top500 HPC system in the world uses Linux (see https://www.top500.org/).
So does almost every other HPC system in the world—as well as cloud, workstations…

Why? “Linux is efficient, well-understood, battle-tested. It works and it’s free.”
— Steve R. Hastings, Why is Linux the preferred OS for supercomputers?

• Scalable: from mobile phones to the Frontier HPC system in the United States with
8,699,904 processor cores (1194 PFlop/s, 22.7 MW)… and everything in-between

• Free Software / Open Source: full source code provided with permission to modify and
redistribute (you can fix it yourself)

• Based on the principles of Unix: in use since 1969, encouraging minimalist, modular,
extensible software development

13

https://www.top500.org/
https://www.quora.com/Why-is-Linux-the-preferred-OS-for-Supercomputers

“But Linux is hard!”
• Desktops/laptops with Linux do have nice graphical user

interfaces (KDE, Gnome, …)

• HPC systems normally use the Linux command line

Why? Scriptable: the ability to automate tasks

The UNIX software development philosophy (Peter H. Salus,
A Quarter-Century of Unix, 1994):

1. Write programs that do one thing and do it well.

2. Write programs to work together.

3. Write programs to handle text streams, because that is
a universal interface.

Analogy: Linux provides you with the tools you need to build a house, skyscraper, shack…

14

An easy-to-use interface for HPC
NCI Australian Research Environment
and Katana OnDemand

• For jobs “just a bit bigger” than your
desktop or laptop

• For graphical interactive jobs
– “Quick and dirty” testing
– Setting up for a longer job

(e.g., Ansys/Fluent/CFX meshes)

• Uses your web browser: go to
https://are.nci.org.au/ or
https://kod.restech.unsw.edu.au/

• Katana OnDemand requires using the UNSW
Virtual Private Network at https://vpn.unsw.edu.au/

15

https://are.nci.org.au/
https://kod.restech.unsw.edu.au/
https://vpn.unsw.edu.au/

An easy-to-use interface on Katana

Available applications

• Ansys Workbench

• COMSOL

• Matlab

• ParaView

• Jupyter Notebook

• RStudio Server

• File browser

• Command line

This list is growing!

16

Using Katana On Demand shell access
Try it now:

• Make sure you are connected to the
UNSW VPN (https://vpn.unsw.edu.au/)

• Open your web browser to Katana On
Demand (https://kod.restech.unsw.edu.au/)

• Log in using your zID and zPass

• From the menu at the top of the page,
select Clusters, then Katana shell access

• You will get a command line prompt:
something like z9693022@katana1:~ $

• Press Ctrl and = (Equals) to increase the
font size, Ctrl and – (Minus) to decrease it

• To exit, type exit and press ENTER

17

https://vpn.unsw.edu.au/
https://kod.restech.unsw.edu.au/

Some common questions
• Why does my browser refuse to connect to Katana On Demand (KOD)?

– You need to be connected to the UNSW VPN (https://vpn.unsw.edu.au/)

• Why do I get “Your username and/or password do not match” from KOD?

– You may be typing your zID and/or zPass incorrectly

– You must apply for a Katana account before you can use KOD

• Why don’t I get a green prompt like that in the screenshot?

– This is part of a custom setup created by John Zaitseff, which you can also use

(Optional) Try it now (but please read the comments after “#”):

source ~z9693022/.bashrc # … to get a green prompt temporarily (until exit)
cp -p ~z9693022/.bashrc ~ # … to get John’s custom setup permanently

18

https://vpn.unsw.edu.au/

Connecting to a HPC system directly
Use the Secure Shell protocol (SSH):

• Under Linux or macOS:

– Open a terminal and type: ssh username@hostname
(for example, ssh z1234567@katana.restech.unsw.edu.au)

• Under Windows:

– Use PuTTY: can be downloaded from https://www.putty.org/

– Start PuTTY, select Window » Appearance on left-hand side, change the font to
Consolas, Regular, size 16

– Can also use MobaXterm (https://mobaxterm.mobatek.net/) but check licensing

– Under Windows 10 or 11, can use SSH under Windows Subsystem for Linux (WSL)

– Can also install Cygwin: “that Linux feeling on Windows” (https://www.cygwin.com/)

19

https://www.putty.org/
https://mobaxterm.mobatek.net/
https://www.cygwin.com/

Connecting to a HPC system directly
Try it now:

• If you are running Windows, start PuTTY

• Specify Host Name as katana.restech.unsw.edu.au

• Select Window » Appearance on left-hand side, click Change,
change the font to Consolas, Regular, size 16, click OK

• Click Open

• Check first and last few digits of RSA2 fingerprint for security:
9b:4c:ba:a4:09:f3:4c:bd:39:ce:17:d9:18:5c:02:47

• At the “login as:” prompt, enter your zID (e.g., z1234567),
press ENTER, then enter the password (nothing will be shown)
and press ENTER again

• You will get a command line prompt: something like z9693022@katana1:~ $

• To exit, type exit and press ENTER

20

Typing in commands
• Use the keyboard to enter commands

• Commands consist of:

– the program name (which command to run)

– command line arguments (optionally in quotes)

each of which must be separated by one or more spaces

• Commands and arguments are case-sensitive!

Examples:

ls /apps — command “ls”, argument “/apps”
~z9693022/bin/cmdline a1 a2 — command “~z9693022/bin/cmdline”, 2 arguments
~z9693022/bin/cmdline a1 a2 "a3 with spaces" — command with 3 arguments

21

Command line options
• Many commands (programs) have optional command line options

• By convention, command line options appear as the first argument(s)

• Two forms of options: long options and short-form options

• Long options start with two hyphens, “--”, followed by a word

• Short-form options start with one hyphen, “-”, followed by one letter or digit

• By convention, short-form options can be combined, usually in any order: options in “ls
-a -l -F” can be combined as “ls -alF” or “ls -laF” or…

• Most (but not all!) short-form options have a corresponding long option: “ls -a” is the
same as “ls --all”, but “ls -l” is “ls --format=long”

• Some options have arguments, some of which may be optional: “tail -n 20 myfile”
or “tail --lines=20 myfile”

• Many, many inconsistencies after almost 50 years of Unix history!

22

Getting help
How to remember all the command line options and parameters to commands? Don’t try!

• For a brief summary of command line options, try “command --help”

• For some (Bash shell built-in) commands, try “help command”

• For a full explanation, try “man command”

• For some commands, try “info command”

• To quit the man or info commands, press “q” (the Q key, no need to press ENTER)

• To search for a keyword in the Unix manual: “man -k keyword”

• Conventions: [] indicate optional arguments, italics indicate replaceable parameters

• Remember, “Google is your friend!” 

23

Some simple commands with help
Try it now:

cd ~z9693022/src/trader-7.20 # Change directory to ~z9693022/src/trader-7.20
ls # List the contents of the directory
cd src; ls # Multiple commands on one line, separated by “;”
pwd # Comments start with “#”, no need to type them in!

ls --help # Over five pages of summary information!
cd --help # Does this work?
help cd # But this does…
man ls # SPACE or PGDN to go to the next page, “q” to quit
info coreutils # Remember: “q” to quit

ls -a -l # “-a”: also list files starting with “.”; “-l”: list using a more detailed format
ls -al # Combining command line options…
ls --all -l # Mixing long and short-form options

24

Directories and files: paths and pathnames
• Files and directories are organised into a single hierarchical tree structure

• The top of the tree is called the root directory (root), and is denoted as / (slash)

• Directories are containers (or folders) for files and directories

Example: (partial tree only)

25

2019b2018b 2020a bin

/

matlab

etcbin

z9693022

appshome usr

bin share local

Root directory

modules

Absolute pathnames
• Any file or directory can be uniquely represented as an absolute pathname:

– gives the full name of the file or directory

– starts with the root “/” and lists each directory along the way

– has a “/” to separate each path (or
pathname) component

Example:

Directory /apps/matlab/2020b

26

2019b2018b 2020b bin

/

matlab

etcbin appshome usr

bin share local

Root directory

z9693022 modules

Relative pathnames
• When a program (command) is running, it is called a process

• Every process has a current working directory or current directory (“the directory I am
currently in”)

• When you log in, the system sets your current working directory to your home directory,
something like /home/z9693022 or /home/561/jjz561 (highly system dependent)

• Any process can change its current working directory (“cd directory”) at any time

• A relative pathname points to a path relative to the current directory

– does not start with “/”

– path components are still separated with slashes “/”

• Current directory is denoted by “.” (dot)

• The directory above the current one (parent directory) is denoted by “..” (dot-dot)

• Relative pathnames often just contain a filename with no directories (i.e., no slashes “/”)

27

Examples of relative pathnames

• Assume current directory is /home/z9693022/src/trader-7.20:

README → /home/z9693022/src/trader-7.20/README

src/trader.c → /home/z9693022/src/trader-7.20/src/trader.c

../trader-7.20.tar.xz → /home/z9693022/src/trader-7.20.tar.xz

src/.././README → /home/z9693022/src/trader-7.20/README

./README → /home/z9693022/src/trader-7.20/README

28

Important directories
• Home directory (system dependent): on Katana, /home/zID

• Binary directories for utility programs:

– /usr/bin — for essential utilities and some applications

– /usr/local/bin — for local utilities and applications

– /home/zID/bin — for your own utilities

• On Katana, scratch directory for temporary files: /srv/scratch/zID

• On Katana, applications: /apps

• On Katana, module files: /apps/Modules

Note synonyms: path, pathname, filename

29

More with pathnames
• To change directories: “cd dir”

• To change to your home directory: “cd ~” or “cd” (by itself)

• To get current working directory: “pwd”

• To list files in a directory: “ls”

• In full, using Unix conventions: “ls [options] [pathname …]”

• Some options for ls:

– “-a” for all files, including those starting with “.”

– “-l” (lowercase letter L) for long (detailed) listing

• To show the directory tree structure: “tree”, “tree -d” (show directories only)

• To view a file page by page: “less filename”, “q” to quit, “h” for help

30

Playing with pathnames
Try it now:

cd ~z9693022/src/trader-7.20 # Change directory to ~z9693022/src/trader-7.20
pwd # Should show “/home/z9693022/src/trader-7.20”
ls # List the contents of the directory
ls -al # List the contents of the directory (all files, long format)
tree -d . # Show the directory tree structure starting from “.”

ls -l README # Look at the listing details for README
ls -l src/README # Is it the same as src/README?
cd src # Now change to src subdirectory
pwd # Should show “/home/z9693022/src/trader-7.20/src”
ls -l README # Are the details the same as the previous “ls -l” line?
ls -l ../README # And which README are we referring to now?
cd .. # Now change to the parent directory
pwd # Should show “/home/z9693022/src/trader-7.20” again

31

The Bourne Again (Bash) shell
• Official manual page entry (“man bash”):

Bash is an sh-compatible command language interpreter that executes commands read from
the standard input or from a file. Bash also incorporates useful features from the Korn and C
shells (ksh and csh).

Bash is intended to be a conformant implementation of the Shell and Utilities portion of the
IEEE POSIX specification (IEEE Standard 1003.1). Bash can be configured to be POSIX-
conformant by default.

• Interprets your typed commands and executes them

• Just another Linux program: nothing special about it!

• By default, started by the system when you log in

• You can then start another shell, if you like (e.g., ksh, tcsh, even python)

• You can start a subshell by running “bash”

• To exit a subshell (or the main shell): “exit”

32

Some features of Bash
• Powerful command line facilities (shortcuts) to make life easier for you:

– Tab completion (press the TAB key to complete commands and pathnames, TAB TAB
to list all possibilities)

– Command line editing: try ↑ (Up-Arrow) to recall previous commands, CTRL-R (C-R or
^R) to search for previous commands, ← and → to move along current command line

• A full programming and scripting language:
– Variables and arrays
– Loops (for; while; until), control statements (if … then … else; case)
– Functions and coprocesses
– Text processing (“expansion” and “parameter substitution”)
– Simple arithmetic calculations
– Input/output redirection (e.g., redirect output to different files)
– Much, much more! (The man page runs to almost 6000 lines)

33

File and directory patterns
• The Bash shell interprets certain characters in the command line by replacing them with

matching pathnames

• Called pathname expansion, pattern matching, wildcards or globbing

• This globbing is a feature of the Bash shell, not the operating system itself

• At the start of a filename: “~” is replaced with your home directory, “~user” is replaced
with the home directory of user user.

• For existing pathnames: “*” matches any string, “?” matches any single character,
“[abc]” matches any one of the enclosed characters (in this case, “a”, “b” or “c”)

• Glob patterns “*”, “?” and “[…]” only match existing pathnames

• Even for pathnames that do not exist: “{alt1,alt2,…}” lists alternatives, “{n..m}”
lists all numbers between n and m, “{n..m..s}” from n to m in steps of s

– Technically called brace expansion

34

Playing with pathname expansion
Try it now:

cd ~z9693022/src/trader-7.20/src
alias z=~z9693022/bin/cmdline # Make a temporary shortcut “z” to the cmdline script

z arg1 arg2 # Show how arguments arg1 and arg2 are passed to programs
z arg1 "arg2 with space" # Bash handles the quoting characters, too
z ~ # Show how Bash expands “~”
z ~z9693022 # … and for user z9693022’s home directory

z *c # Show how Bash expands “*c”: all filenames ending in “c”
z ????.c # … all filenames six characters long (4 + “.c”) ending in “.c”
z M*m # … all filenames starting with “M” and ending with “m”
z [it]* # … all filenames starting with either “i” or “t”
z ../lib/uni* # … all filenames in ../lib starting with “uni”
z ../*/*.c # What does this do?

35

Playing with brace expansion
Try it now:

cd ~z9693022/src/trader-7.20/src
alias z=~z9693022/bin/cmdline # Make a temporary shortcut “z” to the cmdline script

ls test-* # “No such file or directory”
z test-* # What is passed as argument 1?
z test-{one,two,three} # What three arguments does Bash expand this to?
z somedir/{one,two,three} # … and this?

z test-{1..100} # Expand to “test-1”, “test-2”, …, “test-100”
z test-{001..100} # … with zero-padding
z test-{1..100..3} # … by steps of three
z test-{100..1..-3} # … by steps of negative three

36

Naming files and directories
• Linux allows any characters in filenames except “/” and the NUL byte

• You may create filenames with “weird” characters in them:
– spaces and tabs
– starting with “-”: conflicts with command line options
– question marks “?”, asterisks “*”, brackets and braces
– other characters with special meanings: “!”, “$”, “&”, “#”, “"”, etc.

• Just because you can does not mean you should!

• To match such files: use the glob characters “*” and “?”

• Linux file systems are case-sensitive: README.TXT is different from readme.txt, which is
different from Readme.txt and ReadMe.txt!

• File type suffixes (e.g., “.txt”) are optional but recommended

• Filenames starting with “.” are usually hidden from globs and ls output

Recommendation: Use “a” to “z”, “A” to “Z”, “0” to “9”, “-”, “_” and “.” only.

37

Managing directories
• To create a directory: “mkdir dir …”

• To create intermediate directories as well: “mkdir -p dir …”

• To remove an empty directory: “rmdir dir …”

Try it now:

cd; ls # Change to your home directory and list its contents (should be empty)
mkdir test1 # Create the directory test1
cd test1 # … and change to it
mkdir sub{1,2,3} # What does this do?
mkdir ../test2 # Where is the directory test2 created?
cd ../test2 # Change to it
mkdir sub{04..10} # How to make lots of subdirectories in one go!
cd ~ # Go back to the home directory
tree -d # What does the directory tree structure look like?

38

Managing files
• To output one or more file’s contents: “cat filename …”

• To view one or more files page by page: “less filename …”

• To copy one file: “cp source destination”

• To copy one or more files to a directory: “cp filename … dir”

• To preserve the “last modified” time-stamp: “cp -p”

• To copy recursively: “cp -pr source destination”

• To move one or more files to a different directory: “mv filename … dir”

• To rename a file or directory: “mv oldname newname”

• To remove files: “rm filename …”

Recommendation: use “ls filename …” before rm or mv: what happens if you
accidentally type “rm *”? or “rm * .c”? (note the space!)

39

Managing files and directories
• To copy whole directory trees: “cp -pr filename … destination”

• To copy to and from another Linux or macOS system (e.g., from Katana to Gadi), use
Secure Copy: scp [-p -r] source … destination

– Either source or destination (but not both) can contain a remote system identifier
followed by a colon: “[user@]hostname:”

• Can use rsync: “rsync -vauSH [--delete] [--dry-run] srcdir/ destdir/”

– Powerful command but tricky! Note the trailing “/” on the directory arguments

Examples: (remember, don’t type in the examples!)

cp -pr ~z9693022/src/trader-7.20 .
scp -p ~/file1.txt jjz561@gadi.nci.org.au:file2.txt
scp -p john@zap.org.au:src/README .
rsync -vauSH --delete ~/src/ jjz561@gadi.nci.org.au:~/src-unsw/

40

Playing with pathname expansion
Try it now:

cd ~; mkdir src; cd src

cp -pr ~z9693022/src/trader-7.20 . # Note the trailing “.”!
cd trader-7.20 # Change to the newly copied directory
cat build-aux/bootstrap # Display the contents of this file
ls */*.c # List all files matching “*/*.c”
rm */*.c # … and then remove them!
ls */*.c # What happens now?

mv README my-new-filename # Rename the README file
cp INSTALL new # Make a copy of INSTALL and call it “new”
ls -l INSTALL new # What is the difference between the listings?
cp -p INSTALL same # Copy INSTALL, preserving time-stamps
ls -l INSTALL same # Verify the two files have the same date and time

41

Transferring files to the outside world
• To copy files to another Linux or macOS system: use “scp” or “rsync”

– same as within a HPC/Linux system

• To copy files to and from a Windows machine: use WinSCP, FileZilla, or “scp” or
“rsync” under Windows Subsystem for Linux or Cygwin

– WinSCP may be downloaded from https://winscp.net/eng/index.php

– FileZilla may be downloaded from https://filezilla-project.org/

– both of these programs use a “drag-and-drop” graphical interface

– the MobaXterm client (https://mobaxterm.mobatek.net/) has a built-in Secure Copy
interface as well

42

https://winscp.net/eng/index.php
https://filezilla-project.org/
https://mobaxterm.mobatek.net/

More Linux commands
• What machine am I on? “hostname”

• What is the date and time? “date”

• What files contains a particular string? “grep 'pattern' filename …”

• What is the difference between two files? “diff [-u] file1 file2”

• How do I rename multiple files at once? “rename” or “prename”

• Where is a file named filename? “find dir … -name filename”

• How big is a file or directory? “du -h [filename …]”

• How much space is available in a directory? “df -h [dir …]”

• How much disk quota do I have? On Katana, “disk-usage”, on Gadi “lquota” or (on other
systems) “quota” or “quota -s”

– On Katana: quota for your home directory is 15.0 GB

43

Everything is a file
• Every process (running program) can read from or write to any file

– process must have appropriate read or write permissions!

– data files, configuration files, pathnames passed on the command line, …

• Three files are automatically opened for each process:

– standard input (stdin)

– standard output (stdout)

– standard error (stderr)

In Unix, everything is a file!

• Keyboard and screen are represented by the file /dev/tty; use CTRL-D to signify the
end of input

• Some other special files: /dev/null (an empty file), /dev/zero (an infinite number of
binary zeros—will use up your disk quota in a hurry!)

44

Redirecting input and output
• Standard input, standard output and standard error can be redirected to/from a file or

even piped to another program

• To redirect output to filename, use “>filename”

• To append output to filename, use “>>filename”

• To redirect input from filename, use “<filename”

• To connect the output from one program to the input of another (a pipe), use
“program1 | program2”

• To redirect output to filename and the screen, use “| tee filename”

• Multiple pipes are allowed: “program1 | program2 | … | programn”

• Output of a process can be substituted into a command line: “$(commandline)”

• Many Unix programs are designed to be used in this way, as filters

45

Playing with file redirection
Try it now:

cd ~z9693022/src/trader-7.20

ls > ~/dir-list1 # Redirect the output of ls to ~/dir-list1
cat ~/dir-list1 # Show what is in that file
ls src >> ~/dir-list1 # Append the output of “ls src” to ~/dir-list1
cat ~/dir-list1 # What does the file contain now?
wc -l < ~/dir-list1 # Run “wc -l” (count lines in a file), but use ~/dir-list1 instead

of /dev/tty (the keyboard), the default stdin file

cat ~/dir-list1 | wc -l # Use a pipe from cat to wc (output of cat becomes input of wc)

ls -l /usr/bin | grep Oct # Which files were last modified in October?
ls -l /usr/bin | grep Oct | sort -nk5 # … numerically sorted by the file size (5th field)

46

Simple scripting
• Shell scripts are just files containing a list of commands to be executed

• First line (“magic identifier”) must be “#!/bin/bash”

• Comments are introduced with “#”

• The script file must be made executable: “chmod a+x filename”

Variables:

• To set a variable, use “varname=value” (no spaces!)

• To use a variable, use “$varname” or “${varname}”

• Variable names start with a letter, may contain letters, numbers and “_”

• Variable names are case-sensitive (as with most things Unix)

47

Simple scripting, continued
For loops:

for varname in list …; do
 process using ${varname}
done

Control statements (multiple “elif” allowed; “elif” and “else” clauses are optional):

if [comparison]; then # Use literal “[” and “]” characters
 if-true statements
elif [second-comparison]; then
 if-second-true statements
else
 if-false statements
fi

48

Simple scripting, continued
While loops:

while [comparison]; do
 while-true statements
done

Until loops:

until [comparison]; do
 while-false statements
done

Examples of comparisons:

• string1 = string2 — strings string1 and string2 are equal
• number1 -lt number2 — number1 is less than number2
• file1 -nt file2 — file1 (e.g., a data file) is newer than file2 (e.g., output file)

– See the manual page for test (“man test”) for more information

49

Simple scripting, continued
Functions:

funcname () {
 body of function, parameters are accessed using $1, $2, …
}

– Called using “funcname arg1 arg2 …” within the script

• Many, many other programming features available!

• Read the reference and manual pages: “info bash”; “man bash”

• Some books:

– William E. Shotts Jr., The Linux Command Line, No Starch Press, January 2012.
ISBN 9781593273897, 9781593274269

– Cameron Newham, Learning the bash Shell, 3rd Edition, O’Reilly Media, March 2005.
 ISBN 9780596009656, 9780596158965

50

Editing files under Linux
• Use an editor to edit text files

• Many choices, leading to “religious wars”!

• Some options: GNU Emacs, Vim, Nano

• Nano is very simple to use: “nano filename”

– CTRL-X to exit (you will be asked to save any changes on the bottom of the screen)

• GNU Emacs and Vim are highly customisable and programmable

– For example, see the file ~z9693022/.emacs.d/init.el on Katana — currently
almost 2600 lines

– Debra Cameron et al., Learning GNU Emacs, 3rd Edition, O’Reilly Media, December
2004. ISBN 9780596006488, 9780596104184

– Arnold Robbins et al., Learning the vi and Vim Editors, 7th Edition, O’Reilly Media,
July 2008. ISBN 9780596529833, 9780596159351

51

Creating your first script
Try it now:

mkdir ~/ex1; cd ~/ex1 # Create the ~/ex1 directory and change into it
nano ./script1 # Start the Nano text editor with the file script1

Enter the following text:

#!/bin/bash
echo "I am user $(whoami), running on $(hostname)"
echo "Dates and times:"
date # Print the date and time
sleep 30 # Do nothing for 30 seconds
date # Do it again

Press CTRL-X to save the file and exit the editor (follow the prompts on the bottom of the screen), then:

chmod a+x ./script1 # Make script1 executable
./script1 # Execute the script! (Note the use of “./”)

52

A script with loops
Try it now:

qsub -I # After pressing ENTER, wait about 5 minutes until
a new command line prompt is printed

mkdir ~/ex2; cd ~/ex2 # Create and change to ~/ex2
cp -p ~z9693022/doc/hpc-tutorial/examples/make-matlab-scripts .

Don’t forget the trailing “.”!
less ./make-matlab-scripts # Examine the make-matlab-scripts script

Remember: “q” to quit less
./make-matlab-scripts # Run the make-matlab-scripts script

Answer the following questions:

1. What does the make-matlab-scripts do?

2. How does it do it?

3. What files are generated by the script? Hint: use the ls command

4. What type of files are they? (Data files, programs, input files, …)

Once you have answered these questions, type “exit” and press ENTER

53

Applications on the cluster
• Applications are managed using the module system

• On Katana, applications are stored in /apps

• On Katana, module files are stored in /apps/Modules

• Module files set shell environment variables such as PATH

• PATH controls where applications are searched (the search path)

• To see available applications: “module avail [application]”

• To see currently loaded applications: “module list”

• To load an application: “module load application[/version]”

• To unload an application: “module unload application[/version]”

54

Seeing the applications

Try it now:

module avail # What applications are available?
module list # What applications are currently loaded?

echo $PATH # See the current value of the PATH variable
module load matlab/R2023b # Set the PATH to include Matlab R2023b
echo $PATH # What does PATH look like now?
module unload matlab/R2023b # We don’t want to use Matlab R2023b any more…
echo $PATH # PATH no longer contains the Matlab directory

55

HPC architecture revisited

56

SSH

Login node(s)
Head node

Data Mover node(s)

Compute nodes 1, 2, …, n

Storage nodes
Disks

Internal network switch
Runs the PBS scheduler

We’ve been running jobs
(scripts, programs) on a
login node: a bad idea!

Submitting jobs to the cluster
• To submit a job to the cluster compute nodes:

– Create a shell script file as per normal

– Add #PBS directives as required directly after “#!/bin/bash”
(These look like shell comments, but are interpreted by the PBS scheduler)

– Add “cd $PBS_O_WORKDIR” after the #PBS directives

– Execute “qsub ./scriptfile”

– Wait for the job to run, checking its status as required

• Warning: If you have not submitted a job using qsub (or equivalents such as sbatch on
other systems), you are almost certainly running your job on a login node!

• Running jobs on login nodes bypasses the power of the HPC cluster

57

Common PBS directives
• Some common #PBS directives on Katana (see https://docs.restech.unsw.edu.au/, “man
qsub” and “man pbs_resources” for full details); many options have reasonable
defaults:

– #PBS -N scriptname — Set a name for the script
– #PBS -l select=n:ncpus=m:mem=sizeGB

— Request n compute nodes with m processor
 cores and size memory in GB in each

– #PBS -l walltime=hh:mm:ss — How much time is required for running the job
– #PBS -M email — Send notifications to the email address
– #PBS -m abe — What notifications to send by email
– #PBS -j oe — Join standard output and standard error into

 a single file instead of creating two files

58

https://docs.restech.unsw.edu.au/

Checking your job status
• Submit your jobs using “qsub”

– You will be given a job identifier: save this somewhere

• Check job and queue status: “qstat [jobid] [-u zID]”

• Check status of each node on Katana: “pstat | less -S”

• Many systems have an overall system status page

– On Gadi, the live status page is https://nci.org.au/our-systems/status

59

https://nci.org.au/our-systems/status

Managing your jobs
• To see jobs belonging to you: “qstat -u $USER”

• To delete a queued job (whether running or not): “qdel jobid …”

• To modify the resources of a job in the queue: “qalter options jobid …”

• To place a job on hold: “qhold jobid …”

• To release a job currently on hold: “qrls jobid …”

• To rerun a job (kill it and then restart it): “qrerun jobid …”

• To see the status of all nodes on Katana: “pstat | less -S”

– The columns are node name, queue name (indicates nominal owner of the node),
node state, number of processor cores used/total, memory used/total, and a list of
jobs using that node * number of processor cores requested in each job.

60

Your first HPC job!
Try it now:

mkdir ~/ex3; cd ~/ex3 # Create and change to ~/ex3
cp ../ex1/script1 job1 # Copy script1 into job1
nano ./job1 # Start the Nano text editor with the file job1

Enter the following text directly after the “#!/bin/bash” line:

#PBS -M replaceWithYourEmailAddress@unsw.edu.au
#PBS -m abe
#PBS -l walltime=00:05:00
#PBS -l select=1:ncpus=1:mem=1GB
cd $PBS_O_WORKDIR

Press CTRL-X to save the file and exit the editor (follow the prompts on the bottom of the screen), then:

qsub ./job1 # Submit the job to the cluster
qstat -u $USER # Check the queue status (you may need to run this more than once)

… but please wait at least half a minute before doing so!

61

Did my job finish successfully?
• If your job script contains the “#PBS -M email” directive, you will receive an email once

your job starts and a second email once it finishes

• Check Exit_status in the second email: it should be zero for a successful job

Example completion email:

PBS Job Id: 1133074.kman.restech.unsw.edu.au
Job Name: job1
Execution terminated
Exit_status=0 — Successful job!
resources_used.cpupercent=0
resources_used.cput=00:00:00
resources_used.mem=2652kb
resources_used.ncpus=1
resources_used.vmem=2652kb
resources_used.walltime=00:00:31 — 31 seconds out of 5 mins requested

62

Where did my output go?
• PBS automatically redirect standard input, standard output and standard error:

– standard input from /dev/null
– standard output to script.ojobid
– standard error to script.ejobid (should be empty for successful runs)

Try it now:

cd ~/ex3; ls # What files are present?
less job1.e* # View the error output (should be empty); remember: “q” to quit less
less job1.o* # View the standard output

Answer the following questions:

1. What difference is there between the output of job1 and ../ex1/script1? Hint: “running on …”

2. What else appears in the standard output file?

3. How could you use this information for future runs of this job?

63

Running interactive jobs
• Remember: Running jobs on login nodes bypasses the power of the HPC cluster

• But running interactively is useful for debugging!

• Solution: Start an interactive job

– Replace the script name with “-I”

– For programs with a graphical user interface, use “-I -X” if you have an X11 server

– Specify all #PBS directives as command line options to “qsub”:

#PBS -l walltime=hh:mm:ss
→ “qsub … -l walltime=hh:mm:ss …”

#PBS -l select=n:ncpus=m:mem=sizeGB
→ “qsub … -l select=n:ncpus=m:mem=sizeGB …”

…

64

Running interactively

Try it now:

cd ~/ex1
hostname # Where am I running? katana1–katana3 are login nodes
qsub -l walltime=0:10:00 -l select=1:ncpus=1:mem=4GB -I

Request an interactive job (you may need to wait)

Once a command line prompt appears:

hostname # Where am I running now? kNNN is a compute node
./script1 # Run ./script1, but now on a compute node
exit # Finish the interactive job and return to the login node

65

Where to from here?
• Read the documentation for your HPC system:

– Katana User Documentation: https://docs.restech.unsw.edu.au/

• Talk to your colleagues and/or supervisor about how they use High Performance
Computing: with permission, copy their scripts to get started

• Undertake additional training through Research Technology Training:

– Over 50 free courses run every year!

– See https://unsw.sharepoint.com/sites/Restech/SitePages/Events-&-Training.aspx

• Come to Drop-In Hour with your questions, problems with code, HPC, data and more:

– Currently via Microsoft Teams every Wednesday 1–2pm

66

https://docs.restech.unsw.edu.au/
https://unsw.sharepoint.com/sites/Restech/SitePages/Events-&-Training.aspx
https://teams.microsoft.com/l/channel/19%3A358ea86ab3d541529ebfb1a49287a2c5@thread.skype/Hacky%2520Hour?groupId=96e130bc-dfcd-4e4c-a561-58333ea61ea8&tenantId=3ff6cfa4-e715-48db-b8e1-0867b9f9fba3

Conclusion
You have begun your journey to using
Linux and High Performance Computing
effectively. Well done!

John Zaitseff <J.Zaitseff@unsw.edu.au>

Please fill out the following two-minute
survey:

https://goo.gl/forms/vdZI1XIHfXXebuFy1

Keep in contact:

https://unsw.sharepoint.com/sites/Restech
<restech@unsw.edu.au>

67

Image credit: UNSW Sydney

mailto:J.Zaitseff@unsw.edu.au
https://goo.gl/forms/vdZI1XIHfXXebuFy1
https://unsw.sharepoint.com/sites/Restech
mailto:restech@unsw.edu.au

	Slide 1
	Heading
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

