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Outline of this course
• Computer architecture: laptops/desktops, workstations, servers, cloud and HPC

• Available HPC facilities: getting an account, creating a project

• Connecting to a server, cloud and/or HPC system

• The Linux command line and the Bash shell

• Working with directories and files

• Redirecting standard input, output and error

• Creating, editing and running script files

• Submitting jobs to a HPC cluster, controlling jobs, querying job status

This is your course, so ask questions!
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“High performance computing (HPC) is the 
use of large-scale, off-site computers and 
parallel processing techniques for solving 
complex computational problems…  HPC is 
typically used for solving advanced problems 
and performing research activities through 
computer modelling, simulation and 
analysis…”

— Intersect Australia
http://www.intersect.org.au/time/supercomputing

What is High Performance Computing?
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Computer architecture: desktops, laptops…
Typical standard PC architecture:

• One processor (CPU)

• DRAM memory

• One graphics processor (GPU)

• Storage: hard drive(s), SSD(s)

• Keyboard

• Display screen: LCD

• Network: GbE

• Other peripherals, power supply,
cooling
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Computer architecture: workstations
Typical workstation architecture:

• One or two processors (CPU)

• DRAM memory (with ECC)

• One or more GPUs

• Storage: hard drives, SSDs

• Keyboard

• Display screen: LCD

• Network: GbE, 10GbE

• Other peripherals, power supply,
cooling
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Computer architecture: servers
Typical server architecture:

• One to four processors (CPU)

• DRAM memory (with ECC)

• One or more GPUs (optional)

• Storage: hard drives, SSDs

• Network: GbE, 10GbE

• Power supply, cooling

• Access is almost always via
network ports using TCP/IP
Internet protocols
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Computer architecture: cloud servers
Typical cloud server architecture:

• Standard server architecture

• Hypervisor software creates
the illusion of multiple individual
(virtual) servers

• Virtual servers are usually
independent, non-cooperating

• Allows for virtual server migration

• Excellent for interactive processes

• Not “bare metal”: run ~10-15%
slower than physical hardware
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Computer architecture: HPC
Massively Parallel Distributed Computational Clusters

• Many individual cooperating servers (“nodes”): dozens to
tens of thousands

• Multiple processors per node: between 8 and 64 cores

• Interconnected by fast networks: 10Gb, 56Gb, 100Gb+

• Fast networks optimised for interprocess communications,
often MPI (Message Passing Interface) using InfiniBand
using fat-tree or similar networks

• Almost without exception run Linux, often CentOS 7 or later
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The old Trentino cluster
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Computer architecture: simple HPC
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Computer architecture: more complex HPC
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The Katana cluster: katana.unsw.edu.au

For staff and students at UNSW Sydney:

• 168 × Dell, Lenovo and Huawei server nodes (various models)
– Head/login nodes: katana (katana1, katana2 and katana3)
– Compute nodes: k001 to k255 (not all nodes present)

• 7060 × Intel Xeon processor cores (various models)
– Mostly two physical processors per node
– 16–80 × CPU cores per physical processor

• 54.5 TB of main memory (128–1536 GB per node)
• Over 3 PB of storage (and growing)
• 10Gb Ethernet + 100Gb Infiniband network interconnect
• Currently uses a “buy-in” scheme: ~$20k per node
• Ideal for beginner and intermediate HPC users

https://research.unsw.edu.au/katana
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The old Leonardi cluster (similar to Katana)
Image credit: John Zaitseff, UNSW

https://research.unsw.edu.au/katana


The Gadi cluster: gadi.nci.org.au
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Part of the Gadi cluster in Canberra, ACT
Image credit: National Computational Infrastructure

For researchers across Australia (national facilities):

• 4997 × compute server nodes
• 260,760 × Intel Xeon Cascade Lake and some older

Skylake and Broadwell processor cores
• 50 × compute nodes with 1536 GB of memory
• 7 × compute nodes with 3072 GB of memory
• 692 × NVIDIA Tesla V100 GPU coprocessors
• Over 1275.9 TB of main memory
• Over 68 PB of storage
• 200Gb Infiniband network in Dragonfly+ topology
• High-speed DDN Lustre parallel file system
• Ideal for intermediate and advanced HPC users

https://nci.org.au/our-systems/hpc-systems

https://nci.org.au/our-systems/hpc-systems


Why learn Linux?
• To use High Performance Computing, you need to know how to use Linux

• Every single Top500 HPC system in the world uses Linux (see https://www.top500.org/).  
So does almost every other HPC system in the world—as well as cloud, workstations…

Why?  “Linux is efficient, well-understood, battle-tested.  It works and it’s free.”
— Steve R. Hastings, Why is Linux the preferred OS for supercomputers?

• Scalable: from mobile phones to the Frontier HPC system in the United States with 
8,699,904 processor cores (1194 PFlop/s, 22.7 MW)… and everything in-between

• Free Software / Open Source: full source code provided with permission to modify and 
redistribute (you can fix it yourself)

• Based on the principles of Unix: in use since 1969, encouraging minimalist, modular, 
extensible software development
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“But Linux is hard!”
• Desktops/laptops with Linux do have nice graphical user

interfaces (KDE, Gnome, …)

• HPC systems normally use the Linux command line

Why?  Scriptable: the ability to automate tasks

The UNIX software development philosophy (Peter H. Salus,
A Quarter-Century of Unix, 1994):

1. Write programs that do one thing and do it well.

2. Write programs to work together.

3. Write programs to handle text streams, because that is
a universal interface.

Analogy: Linux provides you with the tools you need to build a house, skyscraper, shack…
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An easy-to-use interface for HPC
NCI Australian Research Environment
and Katana OnDemand

• For jobs “just a bit bigger” than your
desktop or laptop

• For graphical interactive jobs
– “Quick and dirty” testing
– Setting up for a longer job

(e.g., Ansys/Fluent/CFX meshes)

• Uses your web browser: go to
https://are.nci.org.au/ or
https://kod.restech.unsw.edu.au/

• Katana OnDemand requires using the UNSW
Virtual Private Network at https://vpn.unsw.edu.au/

15

https://are.nci.org.au/
https://kod.restech.unsw.edu.au/
https://vpn.unsw.edu.au/


An easy-to-use interface on Katana

Available applications

• Ansys Workbench

• COMSOL

• Matlab

• ParaView

• Jupyter Notebook

• RStudio Server

• File browser

• Command line

This list is growing!

16



Using Katana On Demand shell access
Try it now:

• Make sure you are connected to the
UNSW VPN (https://vpn.unsw.edu.au/)

• Open your web browser to Katana On
Demand (https://kod.restech.unsw.edu.au/)

• Log in using your zID and zPass

• From the menu at the top of the page,
select Clusters, then Katana shell access

• You will get a command line prompt:
something like  z9693022@katana1:~ $ 

• Press Ctrl and = (Equals) to increase the
font size, Ctrl and – (Minus) to decrease it

• To exit, type exit and press ENTER
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Some common questions
• Why does my browser refuse to connect to Katana On Demand (KOD)?

– You need to be connected to the UNSW VPN (https://vpn.unsw.edu.au/)

• Why do I get “Your username and/or password do not match” from KOD?

– You may be typing your zID and/or zPass incorrectly

– You must apply for a Katana account before you can use KOD

• Why don’t I get a green prompt like that in the screenshot?

– This is part of a custom setup created by John Zaitseff, which you can also use

(Optional) Try it now (but please read the comments after “#”):
 

source ~z9693022/.bashrc # … to get a green prompt temporarily (until exit)
cp -p ~z9693022/.bashrc ~ # … to get John’s custom setup permanently
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Connecting to a HPC system directly
Use the Secure Shell protocol (SSH):

• Under Linux or macOS:

– Open a terminal and type: ssh username@hostname
(for example, ssh z1234567@katana.restech.unsw.edu.au)

• Under Windows:

– Use PuTTY: can be downloaded from https://www.putty.org/

– Start PuTTY, select Window » Appearance on left-hand side, change the font to 
Consolas, Regular, size 16

– Can also use MobaXterm (https://mobaxterm.mobatek.net/) but check licensing

– Under Windows 10 or 11, can use SSH under Windows Subsystem for Linux (WSL)

– Can also install Cygwin: “that Linux feeling on Windows” (https://www.cygwin.com/)
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Connecting to a HPC system directly
Try it now:

• If you are running Windows, start PuTTY

• Specify Host Name as katana.restech.unsw.edu.au

• Select Window » Appearance on left-hand side, click Change,
change the font to Consolas, Regular, size 16, click OK

• Click Open

• Check first and last few digits of RSA2 fingerprint for security:
9b:4c:ba:a4:09:f3:4c:bd:39:ce:17:d9:18:5c:02:47

• At the “login as:” prompt, enter your zID (e.g.,  z1234567),
press ENTER, then enter the password (nothing will be shown)
and press ENTER again

• You will get a command line prompt: something like  z9693022@katana1:~ $ 

• To exit, type exit and press ENTER
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Typing in commands
• Use the keyboard to enter commands

• Commands consist of:

– the program name (which command to run)

– command line arguments (optionally in quotes)

each of which must be separated by one or more spaces

• Commands and arguments are case-sensitive!

Examples:

ls /apps   — command “ls”, argument “/apps”
~z9693022/bin/cmdline a1 a2  — command “~z9693022/bin/cmdline”, 2 arguments
~z9693022/bin/cmdline a1 a2 "a3 with spaces" — command with 3 arguments
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Command line options
• Many commands (programs) have optional command line options

• By convention, command line options appear as the first argument(s)

• Two forms of options: long options and short-form options

• Long options start with two hyphens, “--”, followed by a word

• Short-form options start with one hyphen, “-”, followed by one letter or digit

• By convention, short-form options can be combined, usually in any order: options in “ls 
-a -l -F” can be combined as “ls -alF” or “ls -laF” or…

• Most (but not all!) short-form options have a corresponding long option: “ls -a” is the 
same as “ls --all”, but “ls -l” is “ls --format=long”

• Some options have arguments, some of which may be optional: “tail -n 20 myfile” 
or “tail --lines=20 myfile”

• Many, many inconsistencies after almost 50 years of Unix history!
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Getting help
How to remember all the command line options and parameters to commands?  Don’t try!

• For a brief summary of command line options, try “command --help”

• For some (Bash shell built-in) commands, try “help command”

• For a full explanation, try “man command”

• For some commands, try “info command”

• To quit the man or info commands, press “q” (the Q key, no need to press ENTER)

• To search for a keyword in the Unix manual: “man -k keyword”

• Conventions: [ ] indicate optional arguments, italics indicate replaceable parameters

• Remember, “Google is your friend!” 
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Some simple commands with help
Try it now:

cd ~z9693022/src/trader-7.20 # Change directory to ~z9693022/src/trader-7.20
ls # List the contents of the directory
cd src; ls # Multiple commands on one line, separated by “;”
pwd # Comments start with “#”, no need to type them in!

ls --help # Over five pages of summary information!
cd --help # Does this work?
help cd # But this does…
man ls # SPACE or PGDN to go to the next page, “q” to quit
info coreutils # Remember: “q” to quit

ls -a -l # “-a”: also list files starting with “.”; “-l”: list using a more detailed format
ls -al # Combining command line options…
ls --all -l # Mixing long and short-form options
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Directories and files: paths and pathnames
• Files and directories are organised into a single hierarchical tree structure

• The top of the tree is called the root directory (root), and is denoted as / (slash)

• Directories are containers (or folders) for files and directories

Example: (partial tree only)
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Absolute pathnames
• Any file or directory can be uniquely represented as an absolute pathname:

– gives the full name of the file or directory

– starts with the root “/” and lists each directory along the way

– has a “/” to separate each path (or
pathname) component

Example:

Directory /apps/matlab/2020b
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Relative pathnames
• When a program (command) is running, it is called a process

• Every process has a current working directory or current directory (“the directory I am 
currently in”)

• When you log in, the system sets your current working directory to your home directory, 
something like /home/z9693022 or /home/561/jjz561 (highly system dependent)

• Any process can change its current working directory (“cd directory”) at any time

• A relative pathname points to a path relative to the current directory

– does not start with “/”

– path components are still separated with slashes “/”

• Current directory is denoted by “.” (dot)

• The directory above the current one (parent directory) is denoted by “..” (dot-dot)

• Relative pathnames often just contain a filename with no directories (i.e., no slashes “/”)
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Examples of relative pathnames

• Assume current directory is /home/z9693022/src/trader-7.20:

README →   /home/z9693022/src/trader-7.20/README

src/trader.c →   /home/z9693022/src/trader-7.20/src/trader.c

../trader-7.20.tar.xz →   /home/z9693022/src/trader-7.20.tar.xz

src/.././README →   /home/z9693022/src/trader-7.20/README

./README →   /home/z9693022/src/trader-7.20/README
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Important directories
• Home directory (system dependent): on Katana, /home/zID

• Binary directories for utility programs:

– /usr/bin — for essential utilities and some applications

– /usr/local/bin — for local utilities and applications

– /home/zID/bin — for your own utilities

• On Katana, scratch directory for temporary files: /srv/scratch/zID

• On Katana, applications: /apps

• On Katana, module files: /apps/Modules

Note synonyms: path, pathname, filename
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More with pathnames
• To change directories: “cd dir”

• To change to your home directory: “cd ~” or “cd” (by itself)

• To get current working directory: “pwd”

• To list files in a directory: “ls”

• In full, using Unix conventions: “ls [options] [pathname …]”

• Some options for ls:

– “-a” for all files, including those starting with “.”

– “-l” (lowercase letter L) for long (detailed) listing

• To show the directory tree structure: “tree”, “tree -d” (show directories only)

• To view a file page by page: “less filename”, “q” to quit, “h” for help
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Playing with pathnames
Try it now:

cd ~z9693022/src/trader-7.20 # Change directory to ~z9693022/src/trader-7.20
pwd # Should show “/home/z9693022/src/trader-7.20”
ls # List the contents of the directory
ls -al # List the contents of the directory (all files, long format)
tree -d . # Show the directory tree structure starting from “.”

ls -l README # Look at the listing details for README
ls -l src/README # Is it the same as src/README?
cd src # Now change to src subdirectory
pwd # Should show “/home/z9693022/src/trader-7.20/src”
ls -l README # Are the details the same as the previous “ls -l” line?
ls -l ../README # And which README are we referring to now?
cd .. # Now change to the parent directory
pwd # Should show “/home/z9693022/src/trader-7.20” again

31



The Bourne Again (Bash) shell
• Official manual page entry (“man bash”):

Bash is an sh-compatible command language interpreter that executes commands read from 
the standard input or from a file.  Bash also incorporates useful features from the Korn and C 
shells (ksh and csh).

Bash is intended to be a conformant implementation of the Shell and Utilities portion of the 
IEEE POSIX specification (IEEE Standard 1003.1).   Bash can be configured to be POSIX-
conformant by default.

• Interprets your typed commands and executes them

• Just another Linux program: nothing special about it!

• By default, started by the system when you log in

• You can then start another shell, if you like (e.g., ksh, tcsh, even python)

• You can start a subshell by running “bash”

• To exit a subshell (or the main shell): “exit”
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Some features of Bash
• Powerful command line facilities (shortcuts) to make life easier for you:

– Tab completion (press the TAB key to complete commands and pathnames, TAB TAB 
to list all possibilities)

– Command line editing: try ↑ (Up-Arrow) to recall previous commands, CTRL-R (C-R or 
^R) to search for previous commands, ← and → to move along current command line

• A full programming and scripting language:
– Variables and arrays
– Loops (for; while; until), control statements (if … then … else; case)
– Functions and coprocesses
– Text processing (“expansion” and “parameter substitution”)
– Simple arithmetic calculations
– Input/output redirection (e.g., redirect output to different files)
– Much, much more! (The man page runs to almost 6000 lines)
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File and directory patterns
• The Bash shell interprets certain characters in the command line by replacing them with 

matching pathnames

• Called pathname expansion, pattern matching, wildcards or globbing

• This globbing is a feature of the Bash shell, not the operating system itself

• At the start of a filename: “~” is replaced with your home directory, “~user” is replaced 
with the home directory of user user.

• For existing pathnames: “*” matches any string, “?” matches any single character, 
“[abc]” matches any one of the enclosed characters (in this case, “a”, “b” or “c”)

• Glob patterns “*”, “?” and “[…]” only match existing pathnames

• Even for pathnames that do not exist: “{alt1,alt2,…}” lists alternatives, “{n..m}” 
lists all numbers between n and m, “{n..m..s}” from n to m in steps of s

– Technically called brace expansion
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Playing with pathname expansion
Try it now:

cd ~z9693022/src/trader-7.20/src
alias z=~z9693022/bin/cmdline # Make a temporary shortcut “z” to the cmdline script

z arg1 arg2 # Show how arguments arg1 and arg2 are passed to programs
z arg1 "arg2 with space" # Bash handles the quoting characters, too
z ~ # Show how Bash expands “~”
z ~z9693022 # … and for user z9693022’s home directory

z *c # Show how Bash expands “*c”: all filenames ending in “c”
z ????.c # … all filenames six characters long (4 + “.c”) ending in “.c”
z M*m # … all filenames starting with “M” and ending with “m”
z [it]* # … all filenames starting with either “i” or “t”
z ../lib/uni* # … all filenames in ../lib starting with “uni”
z ../*/*.c # What does this do?
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Playing with brace expansion
Try it now:

cd ~z9693022/src/trader-7.20/src
alias z=~z9693022/bin/cmdline # Make a temporary shortcut “z” to the cmdline script

ls test-* # “No such file or directory”
z test-* # What is passed as argument 1?
z test-{one,two,three} # What three arguments does Bash expand this to?
z somedir/{one,two,three} # … and this?

z test-{1..100} # Expand to “test-1”, “test-2”, …, “test-100”
z test-{001..100} # … with zero-padding
z test-{1..100..3} # … by steps of three
z test-{100..1..-3} # … by steps of negative three
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Naming files and directories
• Linux allows any characters in filenames except “/” and the NUL byte

• You may create filenames with “weird” characters in them:
– spaces and tabs
– starting with “-”: conflicts with command line options
– question marks “?”, asterisks “*”, brackets and braces
– other characters with special meanings: “!”, “$”, “&”, “#”, “"”, etc.

• Just because you can does not mean you should!

• To match such files: use the glob characters “*” and “?”

• Linux file systems are case-sensitive: README.TXT is different from readme.txt, which is 
different from Readme.txt and ReadMe.txt!

• File type suffixes (e.g., “.txt”) are optional but recommended

• Filenames starting with “.” are usually hidden from globs and ls output

Recommendation: Use “a” to “z”, “A” to “Z”, “0” to “9”, “-”, “_” and “.” only.
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Managing directories
• To create a directory: “mkdir dir …”

• To create intermediate directories as well: “mkdir -p dir …”

• To remove an empty directory: “rmdir dir …”

Try it now:

cd; ls # Change to your home directory and list its contents (should be empty)
mkdir test1 # Create the directory test1
cd test1 # … and change to it
mkdir sub{1,2,3} # What does this do?
mkdir ../test2 # Where is the directory test2 created?
cd ../test2 # Change to it
mkdir sub{04..10} # How to make lots of subdirectories in one go!
cd ~ # Go back to the home directory
tree -d # What does the directory tree structure look like?
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Managing files
• To output one or more file’s contents: “cat filename …”

• To view one or more files page by page: “less filename …”

• To copy one file: “cp source destination”

• To copy one or more files to a directory: “cp filename … dir”

• To preserve the “last modified” time-stamp: “cp -p”

• To copy recursively: “cp -pr source destination”

• To move one or more files to a different directory: “mv filename … dir”

• To rename a file or directory: “mv oldname newname”

• To remove files: “rm filename …”

Recommendation: use “ls filename …” before rm or mv: what happens if you 
accidentally type “rm *”?  or “rm * .c”? (note the space!)
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Managing files and directories
• To copy whole directory trees: “cp -pr filename … destination”

• To copy to and from another Linux or macOS system (e.g., from Katana to Gadi), use 
Secure Copy: scp [-p -r] source … destination

– Either source or destination (but not both) can contain a remote system identifier 
followed by a colon: “[user@]hostname:”

• Can use rsync: “rsync -vauSH [--delete] [--dry-run] srcdir/ destdir/”

– Powerful command but tricky!  Note the trailing “/” on the directory arguments

Examples: (remember, don’t type in the examples!)

cp -pr ~z9693022/src/trader-7.20 .
scp -p ~/file1.txt jjz561@gadi.nci.org.au:file2.txt
scp -p john@zap.org.au:src/README .
rsync -vauSH --delete ~/src/ jjz561@gadi.nci.org.au:~/src-unsw/
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Playing with pathname expansion
Try it now:

cd ~; mkdir src; cd src

cp -pr ~z9693022/src/trader-7.20 .  # Note the trailing “.”!
cd trader-7.20  # Change to the newly copied directory
cat build-aux/bootstrap  # Display the contents of this file
ls */*.c  # List all files matching “*/*.c”
rm */*.c  # … and then remove them!
ls */*.c  # What happens now?

mv README my-new-filename  # Rename the README file
cp INSTALL new  # Make a copy of INSTALL and call it “new”
ls -l INSTALL new  # What is the difference between the listings?
cp -p INSTALL same  # Copy INSTALL, preserving time-stamps
ls -l INSTALL same  # Verify the two files have the same date and time
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Transferring files to the outside world
• To copy files to another Linux or macOS system: use “scp” or “rsync”

– same as within a HPC/Linux system

• To copy files to and from a Windows machine: use WinSCP, FileZilla, or “scp” or 
“rsync” under Windows Subsystem for Linux or Cygwin

– WinSCP may be downloaded from https://winscp.net/eng/index.php

– FileZilla may be downloaded from https://filezilla-project.org/

– both of these programs use a “drag-and-drop” graphical interface

– the MobaXterm client (https://mobaxterm.mobatek.net/) has a built-in Secure Copy 
interface as well
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More Linux commands
• What machine am I on? “hostname”

• What is the date and time? “date”

• What files contains a particular string? “grep 'pattern' filename …”

• What is the difference between two files? “diff [-u] file1 file2”

• How do I rename multiple files at once? “rename” or “prename”

• Where is a file named filename? “find dir … -name filename”

• How big is a file or directory? “du -h [filename …]”

• How much space is available in a directory? “df -h [dir …]”

• How much disk quota do I have?  On Katana, “disk-usage”, on Gadi “lquota” or (on other 
systems) “quota” or “quota -s”

– On Katana: quota for your home directory is 15.0 GB
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Everything is a file
• Every process (running program) can read from or write to any file

– process must have appropriate read or write permissions!

– data files, configuration files, pathnames passed on the command line, …

• Three files are automatically opened for each process:

– standard input (stdin)

– standard output (stdout)

– standard error (stderr)

In Unix, everything is a file!

• Keyboard and screen are represented by the file /dev/tty; use CTRL-D to signify the 
end of input

• Some other special files: /dev/null (an empty file), /dev/zero (an infinite number of 
binary zeros—will use up your disk quota in a hurry!)
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Redirecting input and output
• Standard input, standard output and standard error can be redirected to/from a file or 

even piped to another program

• To redirect output to filename, use “>filename”

• To append output to filename, use “>>filename”

• To redirect input from filename, use “<filename”

• To connect the output from one program to the input of another (a pipe), use
“program1 | program2”

• To redirect output to filename and the screen, use “| tee filename”

• Multiple pipes are allowed: “program1 | program2 | … | programn”

• Output of a process can be substituted into a command line: “$(commandline)”

• Many Unix programs are designed to be used in this way, as filters
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Playing with file redirection
Try it now:

cd ~z9693022/src/trader-7.20

ls > ~/dir-list1 # Redirect the output of ls to ~/dir-list1
cat ~/dir-list1 # Show what is in that file
ls src >> ~/dir-list1 # Append the output of “ls src” to ~/dir-list1
cat ~/dir-list1 # What does the file contain now?
wc -l < ~/dir-list1 # Run “wc -l” (count lines in a file), but use ~/dir-list1 instead

#   of /dev/tty (the keyboard), the default stdin file

cat ~/dir-list1 | wc -l # Use a pipe from cat to wc (output of cat becomes input of wc)

ls -l /usr/bin | grep Oct # Which files were last modified in October?
ls -l /usr/bin | grep Oct | sort -nk5 # … numerically sorted by the file size (5th field)
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Simple scripting
• Shell scripts are just files containing a list of commands to be executed

• First line (“magic identifier”) must be “#!/bin/bash”

• Comments are introduced with “#”

• The script file must be made executable: “chmod a+x filename”

Variables:

• To set a variable, use “varname=value” (no spaces!)

• To use a variable, use “$varname” or “${varname}”

• Variable names start with a letter, may contain letters, numbers and “_”

• Variable names are case-sensitive (as with most things Unix)
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Simple scripting, continued
For loops:

for varname in list …; do
    process using ${varname}
done

Control statements (multiple “elif” allowed; “elif” and “else” clauses are optional):

if [ comparison ]; then # Use literal “[” and “]” characters
    if-true statements
elif [ second-comparison ]; then
    if-second-true statements
else
    if-false statements
fi
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Simple scripting, continued
While loops:

while [ comparison ]; do
    while-true statements
done

Until loops:

until [ comparison ]; do
    while-false statements
done

Examples of comparisons:

• string1 = string2 — strings string1 and string2 are equal
• number1 -lt number2 — number1 is less than number2
• file1 -nt file2 — file1 (e.g., a data file) is newer than file2 (e.g., output file)

– See the manual page for test (“man test”) for more information
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Simple scripting, continued
Functions:

funcname () {
    body of function, parameters are accessed using $1, $2, …
}

– Called using “funcname arg1 arg2 …” within the script

• Many, many other programming features available!

• Read the reference and manual pages: “info bash”; “man bash”

• Some books:

– William E. Shotts Jr., The Linux Command Line, No Starch Press, January 2012.  
ISBN 9781593273897, 9781593274269

– Cameron Newham, Learning the bash Shell, 3rd Edition, O’Reilly Media, March 2005. 
 ISBN 9780596009656, 9780596158965
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Editing files under Linux
• Use an editor to edit text files

• Many choices, leading to “religious wars”!

• Some options: GNU Emacs, Vim, Nano

• Nano is very simple to use: “nano filename”

– CTRL-X to exit (you will be asked to save any changes on the bottom of the screen)

• GNU Emacs and Vim are highly customisable and programmable

– For example, see the file ~z9693022/.emacs.d/init.el on Katana — currently 
almost 2600 lines

– Debra Cameron et al., Learning GNU Emacs, 3rd Edition, O’Reilly Media, December 
2004.  ISBN 9780596006488, 9780596104184

– Arnold Robbins et al., Learning the vi and Vim Editors, 7th Edition, O’Reilly Media, 
July 2008.  ISBN 9780596529833, 9780596159351
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Creating your first script
Try it now:

mkdir ~/ex1; cd ~/ex1 # Create the ~/ex1 directory and change into it
nano ./script1 # Start the Nano text editor with the file script1

Enter the following text:

#!/bin/bash
echo "I am user $(whoami), running on $(hostname)"
echo "Dates and times:"
date # Print the date and time
sleep 30 # Do nothing for 30 seconds
date # Do it again

Press CTRL-X to save the file and exit the editor (follow the prompts on the bottom of the screen), then:

chmod a+x ./script1 # Make script1 executable
./script1 # Execute the script! (Note the use of “./”)
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A script with loops
Try it now:

qsub -I # After pressing ENTER, wait about 5 minutes until
#     a new command line prompt is printed

mkdir ~/ex2; cd ~/ex2 # Create and change to ~/ex2
cp -p ~z9693022/doc/hpc-tutorial/examples/make-matlab-scripts .

# Don’t forget the trailing “.”!
less ./make-matlab-scripts # Examine the make-matlab-scripts script

# Remember: “q” to quit less
./make-matlab-scripts # Run the make-matlab-scripts script

Answer the following questions:

1. What does the make-matlab-scripts do?

2. How does it do it?

3. What files are generated by the script?  Hint: use the ls command

4. What type of files are they?  (Data files, programs, input files, …)

Once you have answered these questions, type “exit” and press ENTER
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Applications on the cluster
• Applications are managed using the module system

• On Katana, applications are stored in /apps

• On Katana, module files are stored in /apps/Modules

• Module files set shell environment variables such as PATH

• PATH controls where applications are searched (the search path)

• To see available applications: “module avail [application]”

• To see currently loaded applications: “module list”

• To load an application: “module load application[/version]”

• To unload an application: “module unload application[/version]”
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Seeing the applications

Try it now:

module avail # What applications are available?
module list # What applications are currently loaded?

echo $PATH # See the current value of the PATH variable
module load matlab/R2023b # Set the PATH to include Matlab R2023b
echo $PATH # What does PATH look like now?
module unload matlab/R2023b # We don’t want to use Matlab R2023b any more…
echo $PATH # PATH no longer contains the Matlab directory
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HPC architecture revisited
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SSH

Login node(s)
Head node

Data Mover node(s)

Compute nodes 1, 2, …, n

Storage nodes
Disks

Internal network switch
Runs the PBS scheduler

We’ve been running jobs 
(scripts, programs) on a 
login node: a bad idea!



Submitting jobs to the cluster
• To submit a job to the cluster compute nodes:

– Create a shell script file as per normal

– Add #PBS directives as required directly after “#!/bin/bash”
(These look like shell comments, but are interpreted by the PBS scheduler)

– Add “cd $PBS_O_WORKDIR” after the #PBS directives

– Execute “qsub ./scriptfile”

– Wait for the job to run, checking its status as required

• Warning: If you have not submitted a job using qsub (or equivalents such as sbatch on 
other systems), you are almost certainly running your job on a login node!

• Running jobs on login nodes bypasses the power of the HPC cluster
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Common PBS directives
• Some common #PBS directives on Katana (see https://docs.restech.unsw.edu.au/, “man 
qsub” and “man pbs_resources” for full details); many options have reasonable 
defaults:

– #PBS -N scriptname — Set a name for the script
– #PBS -l select=n:ncpus=m:mem=sizeGB

— Request n compute nodes with m processor
     cores and size memory in GB in each

– #PBS -l walltime=hh:mm:ss — How much time is required for running the job
– #PBS -M email — Send notifications to the email address
– #PBS -m abe — What notifications to send by email
– #PBS -j oe — Join standard output and standard error into

     a single file instead of creating two files
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Checking your job status
• Submit your jobs using “qsub”

– You will be given a job identifier: save this somewhere

• Check job and queue status: “qstat [jobid] [-u zID]”

• Check status of each node on Katana: “pstat | less -S”

• Many systems have an overall system status page

– On Gadi, the live status page is https://nci.org.au/our-systems/status
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Managing your jobs
• To see jobs belonging to you: “qstat -u $USER”

• To delete a queued job (whether running or not): “qdel jobid …”

• To modify the resources of a job in the queue: “qalter options jobid …”

• To place a job on hold: “qhold jobid …”

• To release a job currently on hold: “qrls jobid …”

• To rerun a job (kill it and then restart it): “qrerun jobid …”

• To see the status of all nodes on Katana: “pstat | less -S”

– The columns are node name, queue name (indicates nominal owner of the node), 
node state, number of processor cores used/total, memory used/total, and a list of 
jobs using that node * number of processor cores requested in each job.

60



Your first HPC job!
Try it now:

mkdir ~/ex3; cd ~/ex3 # Create and change to ~/ex3
cp ../ex1/script1 job1 # Copy script1 into job1
nano ./job1 # Start the Nano text editor with the file job1

Enter the following text directly after the “#!/bin/bash” line:

#PBS -M replaceWithYourEmailAddress@unsw.edu.au
#PBS -m abe
#PBS -l walltime=00:05:00
#PBS -l select=1:ncpus=1:mem=1GB
cd $PBS_O_WORKDIR

Press CTRL-X to save the file and exit the editor (follow the prompts on the bottom of the screen), then:

qsub ./job1 # Submit the job to the cluster
qstat -u $USER # Check the queue status (you may need to run this more than once)

# … but please wait at least half a minute before doing so!
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Did my job finish successfully?
• If your job script contains the “#PBS -M email” directive, you will receive an email once 

your job starts and a second email once it finishes

• Check Exit_status in the second email: it should be zero for a successful job

Example completion email:

PBS Job Id: 1133074.kman.restech.unsw.edu.au
Job Name:   job1
Execution terminated
Exit_status=0 — Successful job!
resources_used.cpupercent=0
resources_used.cput=00:00:00
resources_used.mem=2652kb
resources_used.ncpus=1
resources_used.vmem=2652kb
resources_used.walltime=00:00:31 — 31 seconds out of 5 mins requested
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Where did my output go?
• PBS automatically redirect standard input, standard output and standard error:

– standard input from /dev/null
– standard output to script.ojobid
– standard error to script.ejobid (should be empty for successful runs)

Try it now:

cd ~/ex3; ls # What files are present?
less job1.e* # View the error output (should be empty); remember: “q” to quit less
less job1.o* # View the standard output

Answer the following questions:

1. What difference is there between the output of job1 and ../ex1/script1?  Hint: “running on …”

2. What else appears in the standard output file?

3. How could you use this information for future runs of this job?
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Running interactive jobs
• Remember: Running jobs on login nodes bypasses the power of the HPC cluster

• But running interactively is useful for debugging!

• Solution: Start an interactive job

– Replace the script name with “-I”

– For programs with a graphical user interface, use “-I -X” if you have an X11 server

– Specify all #PBS directives as command line options to “qsub”:

#PBS -l walltime=hh:mm:ss
→ “qsub … -l walltime=hh:mm:ss …”

#PBS -l select=n:ncpus=m:mem=sizeGB
→ “qsub … -l select=n:ncpus=m:mem=sizeGB …”

…
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Running interactively

Try it now:

cd ~/ex1
hostname # Where am I running?  katana1–katana3 are login nodes
qsub -l walltime=0:10:00 -l select=1:ncpus=1:mem=4GB -I

# Request an interactive job (you may need to wait)

Once a command line prompt appears:

hostname # Where am I running now?  kNNN is a compute node
./script1 # Run ./script1, but now on a compute node
exit # Finish the interactive job and return to the login node
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Where to from here?
• Read the documentation for your HPC system:

– Katana User Documentation: https://docs.restech.unsw.edu.au/

• Talk to your colleagues and/or supervisor about how they use High Performance 
Computing: with permission, copy their scripts to get started

• Undertake additional training through Research Technology Training:

– Over 50 free courses run every year!

– See https://unsw.sharepoint.com/sites/Restech/SitePages/Events-&-Training.aspx

• Come to Drop-In Hour with your questions, problems with code, HPC, data and more:

– Currently via Microsoft Teams every Wednesday 1–2pm
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Conclusion
You have begun your journey to using
Linux and High Performance Computing
effectively.  Well done!

John Zaitseff <J.Zaitseff@unsw.edu.au>

Please fill out the following two-minute
survey:

https://goo.gl/forms/vdZI1XIHfXXebuFy1

Keep in contact:

https://unsw.sharepoint.com/sites/Restech
<restech@unsw.edu.au>
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